

Energy Mix : A change towards what?

Limits and potentials of renewables & Carbon Capture

OEC, NOV.1, 2023

"When the Last Tree Is Cut Down, the Last Fish Eaten, and the Last Stream Poisoned, You Will Realize That You Cannot Eat Money" Sitting Bull

"We can not solve our problems with the same level of thinking that created them" A.Einstein

- The presentation focuses on future Electric Production
- CO2 emission : it does not consider other gas (methane, PFC, etc.)
- Presentation will focus on Renewables Electric Technologies : this is only one part of the picture
- Typically, Ammonia and/or H₂ production is not covered
- Constraints linked to Grid issues are not covered
- Constraints linked to mineral supplies are not covered
- All datas used are public

Sources used

Energy World Consumption 2022 naudet

1%

1%

2%

3%

6%

4%

22%

30%

25%

6%

77%

OEC PRESENTATION

World Population Growth

Years of fossil fuel reserves left, 2020

Years of global coal, oil and natural gas left, reported as the reserves-to-product (R/P) ratio which measures the number of years of production left based on known reserves and present annual production levels. Note that these values can change with time based on the discovery of new reserves, and changes in annual production.

Our World in Data

There are 50 years of proven reserves for Oil & Gas and more than 100 years for coal

Is it sustainable? Climate Change

Global carbon budget for a two-degree world

The carbon budget refers to the maximum quantity of carbon (in billion tonnes) that can be released to maintain a 50 percent probability of global average temperature rise below 2°C (the target set by the UN Paris climate agreement). This has been measured relative to the quantity of carbon released if all fossil fuel reserves were burned without using carbon capture and storage (CCS) technology. The difference between the two is defined as 'unburnable carbon'.

But only 1/3 can be (still) burnt to avoid important climate change

Our World in Data

Global warming is a problem for who?

The temperature increase is significantly more sensitive in :

- Norhern hemisphere : Central Europe, Greenland, Siberia, Arctic
- Australia
- > Antartica

This doesn't take into account unpredictible events :

- Hailstorms
- Heavy rains
- Wildfires

Global warming is a problem for who?

CO2 emissions by world region

Europe has started to decrease its CO2 emissions but represents 14% of the total emissions (EU-27 + others)

44% of CO2 world emissions are USA and China; +20% for other Aisian countries (excl. India : Korea, Japan, ...)

CO2 emissions by sector

CO₂ balance

Excess of CO2 emissions and storage capacity Average Human Annual emissions for the period 2009-2018 (emissions and absorption by natural sources and oceans) In Gt CO2

To keep climate « as is », world CO2 emissions has to be divided by 2!

This doesn't mean CO2 reduction in the atmosphere!

Note : l'incertitude pour l'augmentation de la concentration atmosphérique en CO_2 est très faible (± 0,07 Gt CO_2/an) et n'a pas été représentée sur le graphique. **Source :** The Global Carbon Project, Global Carbon Budget, 2019

IPCC Net Zero Emission (NZE)

Electricity Production Mix (2022) **Solution**

World Electricity Production (NZE) **Production**

By 2050, NZE IEA scenario is predicting a huge increase in Electricity production (x2.65) 71 164 TWh with a mix where Renewables jump from 28% to 87,5% (x8)

	Electricit	ty Generatio	on (TWh)				
Date	2019	2020	2022	2030	2040	2050	
Total generation	26 922	26 778	28 525	37 316	56 553	71 164	x factor
Renewables	7 153	7 660	8 531	22 817	47 521	62 333	8
Solar PV	665	821	1289	6 970	17 031	23 469	29
Wind	1 423	1 592	2 139	8 008	18 787	24 785	16
Hydro	4 294	4 418	4 326	5 870	7 445	8 461	2
Bioenergy	665	718	677	1 407	2 676	3 279	5
of which BECCS	-	-		129	673	842	
CSP (Concentrated Solar Panels)	14	14		204	880	1 386	99
Geothermal	92	94	100	330	625	821	9
Marine	1	2		27	77	132	66
Nuclear	2 792	2 698	2 610	3 777	4 855	5 497	2
Hydrogen-based				875	1 857	1 713	
Fossil fuels with CCUS	1	4		459	1 659	1 332	333
Coal with CCUS	1	4		289	966	663	
Natural gas with CCUS				170	694	669	
Unabated fossil fuels	16 941	16 382	17 384	9 358	632	259	0,016
Coal	9 832	9 426	10 190	2 947			
Natural gas	6 314	6 200	6 309	6 222	626	253	
Oil	795	756	885	189	6	6	

Page 16

X2.65

LCOE per type of renewables

Figure 1: Global levelized cost of electricity benchmarks, 2009-2022

Source: BloombergNEF. Note: The global benchmark for PV, wind and storage is a country-weighted average using the latest annual capacity additions. The storage LCOE is reflective of a utility-scale Li-ion battery storage system with four-hour duration running at a daily cycle and includes charging costs.

Off Shore wind will remain expensive PV is now cost efficient

Solar PV+On Sh. Wind vs Fossil **Parter naudet**

TABLE 2.3: CAPEX FOR A UTILITY-SCALE PV POWER PLANT VALUE FOR 19 SELECTED **COUNTRIES IN 2018**

Country Name	CAPEX [\$/kWp]
Canada	2,427
Russia	2,302
Japan	2,101
South Africa	1,671
Australia	1,554
United States	1,549
Brazil	1,519
Mexico	1,541
Argentina	1,433
United Kingdom	1,362

Country Name	CAPEX [\$/kWp]
Republic of Korea	1,326
Saudi Arabia	1,267
Turkey	1,206
Indonesia	1,192
Germany	1,113
France	1,074
China	879
Italy	870
India	794
Global Weighted Average	1,210

Source: IRENA [17].

Figure 1.7 Fuel-only generation costs for coal and fossil gas for 2022 relative to the LCOE of new solar PV, onshore and offshore wind power projects commissioned in 2021, by country

LCOE per type of renewables

Figure 2: Markets where new-build solar and/or wind are cheaper than new-build coal- and gas-fired power, 1H 2022

Source: BloombergNEF. Note: The map shows the technology with the lowest LCOE for new-build plants in each country where BNEF has data. The dollar numbers denote the per-MWh benchmark levelized cost of the cheapest technology. All LCOEs are in nominal terms. Calculations exclude subsidies, tax-credit or grid connection costs. CCGT is combined-cycle gas turbine. Renewables are now competitive with fossil energy for Electricity production. Type of Renwables dépend on natural available sources

Renewables Competitiveness

Figure 1.2 Global weighted average LCOEs from newly commissioned, utility-scale renewable power generation technologies, 2010-2021

	Levelised cost	ratio with		
	(2021 US	SD/kWh)		Fossil
	2010	2021	Percent change	2021
Bioenergy	0,078	0,067	-14%	0%
Geothermal	0,05	0,068	34%	1%
Hydropower	0,039	0,048	24%	-28%
Solar PV	0,417	0,048	-88%	-28%
CSP	0,358	0,114	-68%	70%
Onshore wind	0,102	0,033	-68%	-51%
Offshore wind	0,188	0,075	-60%	12%
fossil fuel	0,078	0,067	-14%	

Solar PV

PROS

- CO2 friendly (pay back footprint CO2 in 3-4years)
- Reliable
- Cost effective
- Simple to implement, especially in zones with limited Grid

CONS

- Depend on lattitude
- · To be coupled with storage capacity (batteries)
- kWh/Kwp is very interesting in countries where Electricity demand is limited
- High potential regions are isolated (Sahara, salt deserts, etc.)

Solar PV / where for who?

This map is published by the World Bank Group, funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info.

Solar PV / where for who?

Unfortunately, kWh/Kwp is very interesting in countries where Electricity demand is limited

CSP (Concentrating Solar Power) **Solar Power**

Supcon Delingha 50MW CSP Plant (146 Gwh annual production)

CSP (Concentrating Solar Power) **Solar Power**

Pros

- Technology proven but needs to be improved to become competitive
- Possible to implement big factories
- Possible to store Energy
- Electricity + Heat delivery

Cons

- Expensive and not competitive (as of today)
- Dedicated to specific environnement (dry)
- Grid issues to connect plants

Supcon Delingha 50MW CSP Plant (146 Gwh annual production)

CSP different technologies

	Parabolic Trough	Solar Tower	Linear Fresnel	Parabolic
Typical capacity (MW)	10–300	10-200	10-200	0.01-0,025
Maturity	Commercially proven	Commercially proven	Recent commercial project	Demonstration projects
Technology development risk	Low	Medium	Medium	Medium
Operating temperature (°C)	350–400	250-565	250-350	550-750
Plant peak efficiency (%)	14–20	23-35a	18	30
Annual solar to electricity efficiency	(%) 11–16	7–20	13	12-25
Annual capacity factor (%)	25–28 (no TES)	55 (10 h TES)	22-24	25-28
	29-43 (7h TES)			
Concentration factor	10–80	>1,000	>60	Up to 10,000
Receiver/absorber	Absorber attached to collector, moves with collector, comp	olex desig External surface or cavity receiver, fixed	Fixed absorber, no evacuation secondary reflected	or Absorber attached to co
Storage system	Indirect two-tank molten salt at 380°C (d <i>T</i> = 100 K)	Direct two-tank molten salt at 550°C (d <i>T</i> = 3	00 K) Short-term pressurized steam storage (<10 min)	No storage for Stirling di
Hybridization	Yes and direct	Yes	Yes, direct (steam boiler)	Not planned
Grid stability	Medium to high (TES or hybridization)	High (large TES)	Medium (back-up firing possible)	Low
Cycle	Superheated Rankine steam cycle	Superheated Rankine steam cycle	Saturated Rankine steam cycle	Stirling
Steam conditions (°C/bar)	380–540/100	540/100–160	260/50	n.a.
Maximum slope of solar field (%)	<1-2	<2-4	<4	10 or more
Water requirement (m ³ /MWh)	3 (wet cooling)	2–3 (wet cooling)	3 (wet cooling)	0.05–0.1 (mirror washing
	0.3 (dry cooling)	0.25 (dry cooling)	0.2 (dry cooling)	
Application type	On-grid	On-grid	On-grid	On-grid/off-grid
Suitability for air cooling	Low to good	Good	Low	Best
Storage with molten salt	Commercially available	Commercially available	Possible, but not proven	Possible but not proven

Supcon Delingha 50MW CSP Plant (146 Gwh annual production)

CSP (Concentrating Solar Power) **Solar Power**

Figure 5.1 Global weighted average total installed costs, capacity factors and LCOE for CSP, 2010-2021

LCOE is not (yet) competitive

High improvements were made in the 10 past years Efficiency could increase with hugher temperature (goal : 600-800°C) and energy storage

On Shore Wind

0.50 0.45 0.40 0.35 2021 USD/kWh 0.30 0.25 0.20 0.15 0.10 0.05 0.00 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 2021 Capacity (MW) 100 200 300 400 ≥ 500 < 10

Figure 2.12 LCOE of onshore wind projects and global weighted average, 1984-2021

Figure 4.13 Offshore wind project and global weighted average LCOEs and auction/PPA prices, 2000-2024

Source: IRENA Renewable Cost Database.

Source: IRENA Renewable Cost Database.

Off Shore Wind – UK First

Number of net additions to offshore wind capacity, by select country (in gigawatts)

Source: International Energy Agency

Off Shore Wind

Figure 4.4 Project turbine size, global weighted average turbine size and wind farm capacity for offshore wind, 2000-2021

Figure 4.13 Offshore wind project and global weighted average LCOEs and auction/PPA prices, 2000-2024

Source: IRENA Renewable Cost Database.

Source: IRENA Renewable Cost Database.

Off Shore Wind

Source: GWEC Market Intelligence, IEA Net Zero by 2050 Roadmap (May 2021), IRENA WETO 1.5C Pathway (June 2021)

Off Shore Wind- Potential bottleneck **Sanddet**

Offshore wind demand and supply benchmark, 2023-2030 (MW)

Source: GWEC Market Intelligence, February 2023

	Demand vs supply ar	emand vs supply analysis 2023-2030 (MW)							
	2023e	2024e	2025e	2026e	2027e	2028e	2029e	2030e	
Europe	5148	2916	6527	9598	10808	16225	20465	26400	
China	8000	12000	14000	15000	15000	15000	15000	15000	
APAC excl. China	1769	1559	2884	2695	3256	5030	5535	6995	
North America	533	955	2335	3535	4500	4500	4500	4500	
LATAM	0	0	0	0	0	0	0	1350	
Global	15450	17430	25746	30828	33564	40755	45500	54245	

Source: GWEC Market Intelligence, July 2023

Sufficient • Potential bottleneck

Marine – Ocean Energy Potential **Paulet**

Figure 1 Global ocean energy capacity forecast, 2030 and 2050

Marine

¹ This example was provided by the Representative from Spain to IRENA's Collaborative Framework on Ocean Energy and Offshore

Notes: UK = United Kingdom: US = United States.

CCUS in NZE: a keystone

CC(U)S – Carbon Capture (Utilization) and Storage

Goal of CCUS: 7,6 Gt per year CO2 captured in 2050 (20% of 2019 CO2 emissions)

When examining Low CCUS case (LCC): 150 Mt/year CO2 captured from fossil fuel sources in 2050, compared to scenario goal 3,6 Gt/year captured from fossil fuels Failure to meet this goal, results in relying on prototype industries

- Increased electricity demand by 9 000 TWh from NZE in 2050
- Increased capacity of electrolysers, 2 000 GW or 60 % increase from NZE in 2050

CCUS: Present Situation

OPERATIONAL

Estimated capacity (G) Science and science

- Current capture rate and capacity: 30 projects, 43 Mt per year
- In development: 164 projects, 244 Mt per year (incl. current)
- Overall technical storage capacity: 8 000 Gt to 55 000 Gt
- Onshore: 6 000 Gt to 42 000 Gt

Onshore

• Offshore: 2 000 Gt to 13 000 Gt

EARLY DEVELOPMENT ON ADVANCED DEVELOPMENT ON CONSTRUCTION

CCUS: cost distribution

Source: Wood Mackenzie Lens CCUS Valuations

Strong cost discrepancy between projects and technologies – capture typically most costly

CCUS – capture vs transport

Figure 3.4 Levelised cost of CO₂ capture by sector and initial CO₂ concentration, 2019

Renewables Competitiveness

Figure 1.2 Global weighted average LCOEs from newly commissioned, utility-scale renewable power generation technologies, 2010-2021

	Levelised cost of electricity			ratio with		
	(2021 U	SD/kWh)		Fossil		
	2010	2021	Percent change	2021		
Bioenergy	0,078	0,067	-14%	0%	-33%	
Geothermal	0,05	0,068	34%	1%	-32%	
Hydropower	0,039	0,048	24%	-28%	-52%	
Solar PV	0,417	0,048	-88%	-28%	-52%	
CSP	0,358	0,114	-68%	70%	13%	
Onshore wind	0,102	0,033	-68%	-51%	-67%	
Offshore wind	0,188	0,075	-60%	12%	-25%	
fossil fuel	0,078	0,067	-14%			
fossil w CCS	5	0,1005				

Integrating CCUS cost in fossil fuel will increase LCOE by 50%, making renewable invesment attractive

Case Study : China

1:50.000.00

- In 2022, China approved a record breaking 106 GW new coal-fired power capacityhas accepted
- In first half of 2023, authorities granted for 52 GW new coal power
- There are 1,037 existing coal-fired plants in Chin
- China 2023 Government Goals :
- Achieve its goal to reach peak carbon emissions by 2030 after which its target is to have carbon emissions decline
- Become carbon neutral by 2060
- Reach a 39% non-fossil fuel share for electricity generation by 2025

Case Study : CO2 EOR in US 2020

In face of climate change, CO2 emissions have to be reduced

Technical solutions are available now

Climate change is a human issue... in the hands of a few decision makers

Renewable are already competitive with Fossil fuel

NZE scenario create investment opportunities for the coming decades worldwide

Thank you for your attention

152, Avenue de Malakoff 75116 Paris - France Telephone +33 (0)1 45 26 90 83 www.naudet.fr

Appendix – geological trapping

APPENDICES

6.1 CO₂ GEOLOGICAL STORAGE

SUMMARY OF STORAGE MECHANISMS AND SECURITY

Four mechanisms exist for trapping CO_2 in the subsurface. These mechanisms occur simultaneously upon injection but occur at different rates (Appendix figure 1). The relative contribution of each trapping mechanism – physical, residual, dissolution, mineralisation – changes with time and with a CO_2 plume's evolution. In the initial decades of a standard storage operation, physical trapping of free-phase CO_2 is the primary trapping mechanism. Trapping of CO_2 is strongly dependent on a site's geology and local formation conditions (in-situ fluids, pressure, temperature). A portion of the CO_2 plume may always remain in its free phase, but physical trapping is permanent when the geologic setting is stable and the CO_2 plume is behaving in the reservoir as predicted.

APPENDIX FIGURE 1: (LOWER PANEL) THE FOUR TRAPPING MECHANISMS OPERATING IN THE SUBSURFACE TO PERMANENTLY STORE CO₂. (UPPER PANEL) RELATIVE CONTRIBUTION OF THE FOUR TRAPPING MECHANISMS TO PERMANENT CO₂ STORAGE THROUGH TIME. EACH MECHANISM OPERATES SIMULTANEOUSLY UPON CO₂ INJECTION, BUT THEY OCCUR AT DIFFERENT RATES. SOURCE: IPCC (2005)

Global CCS Institute, 2023

PHYSICAL TRAPPING

SPILL POINTS (FAULT DEPENDENCY

OF STRUCTURAL CLOSURES)

Physical trapping occurs when buoyant, free-phase CO_2 migrates into a body of rock that has been folded or faulted into a subsurface structure (or "trap"), which closes in three or four directions, and is contained below a low-permeability caprock (or "seal") (see Appendix figure 2). Physical trapping is the same mechanism that traps hydrocarbons in the subsurface. Appendix figure 2 illustrates types of physical traps, including independent folded rock bodies and fault-dependent folds (which rely on closure against a fault for CO_2 containment). In certain geological settings, physical trapping of CO_2 occurs when a reservoir thins laterally and ultimately pinches-out. This is called a stratigraphic trap and is shown at "E" in Appendix figure 2.

[B] FAULT-INDEPENDENT STRUCTURAL TRAP (ANTICLINE FOLD)
[C] FAULT-DEPENDANT STRUCTURAL TRAP (EXTENSIONAL FAULT)
[D] FAULT-DEPENDANT STRUCTURAL TRAP (CONTRACTIONAL FAULT)
[E] STRATIGRAPHIC TRAP (PINCH OUT)

APPENDIX FIGURE 2: SCHEMATIC ILLUSTRATION OF PHYSICAL TRAPS IN THE SUBSURFACE. CIRCLES SHOW

"SPILL POINTS" OR FAULT DEPENDENCY OF STRUCTURAL CLOSURES. (A) Residual trapping can be the dominant trapping mechanism in gently dipping (that is, relative) flat-lying) rock bodies that do not exhibit structural closure. (B) A fault-independent folded rock body (anticline) can trap buoyant CO down to its "spill point", below which CO will imgrate out of the folded trap. (J) A fault-dependent (actensional fault) folded closure relies on the juxtaposition of sealing lithologies across the fault plane to prevent CO: migration out of the trap. (D) A fault-dependent (contractional fault) folded closure relies on the juxtaposition of sealing lithologies across the fault plane to prevent CO: migration out of the trap. (E) A stratigraphic trap relies on lateral changes in lithology (often lateral stratigraphic trap.

Global capacity of CCS

As of September 2022, total capacity of CCS projects *IN DEVEOPMENT* was 244 Mtpa

	OPERATIONAL	IN CONSTRUCTION	ADVANCED DEVELOPMENT	E ARLY DEVELOPMENT	OPERATION S USPENDED	TOTAL
NUMBER OF FACILITIES	30	11	78	75	2	196
CAPTURE CAPACITY (Mtpa)	42.5	9.6	97.6	91.8	2.3	243.9

FIGURE 4: COMMERCIAL CCS FACILITIES BY NUMBER AND TOTAL CO₂ CAPTURE CAPACITY (MID-SEPTEMBER 2022)

Global CCS Institute, 2023

CO2 Retained by EOR

B. CO, that could be retained with CO,-EOR

