

1 NOVEMBER 2023

Energy Transition and the Multi Hazard Assessment Approach

David Dimelow John Evans

- 1. Overview of Multi-Hazard Assessment Tool
- 2. Assessment and Risk Profile
- 3. Failure Mode and Risk Management

CLIMATE ACTION

MULTI-HAZARD ASSESSMENT TOOL

Assessment Items					
Oxygen storage	Hydrogen storage	Carbon storage	Reformer	CHP system	Electrolysis System
Pipeline to storage	Pipeline to storage	Pipeline to storage	Gas supply	Power input	Power input
Pipeline ESDV	Pipeline ESDV	Pipeline ESDV	Steam input	Heat input	Water input
Pipe to storage	Compression	Compression	Power input	Integrity of CHP system	Integrity of Electolysis system
Storage system	Pipe to storage	Pipe to storage	Integrity of reformer	Carbon export	Hydrogen export
not used	Storage system	Storage system	Heat exchanger	District heat export	Oxygen export
not used	not used	not used	Carbon export	Grid power export	not used
not used	not used	not used	Heat output	Energy export	not used
not used	not used	not used	not used	not used	not used

Factor in:

Probable Loss

Geography Infrastructure Risk Value Impact Area

System Interactions

Consequence Weighting

Overall Risk

Thornton Tomasetti

7

Ability to drill down into individual items and consider specific risks

Ability to drill down into individual items and consider specific risks

Consider an offshore wind turbine.

Failure modes:-

Field Impact

Fire Damage

Generator Failure

ROTO

Photo by

Tower Failure

Gearbox Failure

Gas Turbine Fire

Foreign Object Damage

Blade Failure

Flood Damage

Fire Damage

Solar Panel Theft

THANK YOU

ThorntonTomasetti.com John Evans jaevans@thorntontomasetti.com David Dimelow ddimelow@thorntontomasetti.com